
2019 Rocky Mountain Regional
Programming Contest

Solution Sketches

RMRC 2019 Solution Sketches



Credits

Darko Aleksic

Darcy Best

Howard Cheng

Zachary Friggstad

Brandon Fuller

RMRC 2019 Solution Sketches



A - Piece of Cake! (71/71)

The cake is cut into 4 pieces, pick the one with the
maximum length for each side:

4 ·max(a,n − a) ·max(b,n − b)

RMRC 2019 Solution Sketches



K - Lost Lineup (67/68)

n = 1, answer is 1

Otherwise, permutation of numbers between 0 and n − 2

Sort or find position one by one (small n), good enough
even if it is O(n2).

RMRC 2019 Solution Sketches



D - Integer Division (43/66)

Too slow to count each pair one at a time

Equivalence classes: count how many elements have the
same quotient

If there are k elements with the same quotient, then there
are k(k − 1)/2 pairs with the quotient

You can use a map to count for each quotient, or sort the
quotients

Watch out for overflow!

RMRC 2019 Solution Sketches



I - Tired Terry (40/60)

Sliding window of size p

Update the count of “sleep” as we slide the window: look at
the letter entering the window and leaving the window

Easier if input string is duplicated to avoid wraparound

Can be done in linear time.

RMRC 2019 Solution Sketches



B - Fantasy Draft (28/47)

Just simulate one draft pick at a time. . .

To do this under the time limit, you cannot afford to search
the preference list every time

Use a queue for each team: its preference with the global
ranking appended

Keep track of whether a player has been selected or not.

RMRC 2019 Solution Sketches



H - The Biggest Triangle (10/19)

Enumerate all O(n3) different triples of lines.
For each triple:

Make sure no two are parallel (or coincide).
Compute the intersections of any two from the triple.
If they are distinct, add the distances between any two of
them to get this triangle’s perimeter.

Mostly about getting the geometric details right.

RMRC 2019 Solution Sketches



C - Folding a Cube (9/28)

The specification guarantees the six squares form a “tree”.

So there is a unique way to try folding them into a cube.
For any two distinct # squares i , j of the input, consider
putting a “test” cube on square i and rolling it along #
squares to square j .

If this would put the side initially on i face down on j , it is
impossible to fold the cube.
If this never happens for any i , j pair of # squares, the
folding is possible.

So you have to track a side of the cube as it rolls around.

RMRC 2019 Solution Sketches



G - Typo (5/39)

Just doing naively it is too slow, the words can be too big.
Solution: Hashing with polynomials.

Think of each word w := c0c1 . . . cd−1 as a polynomial
w(x) :=

∑
i ci · x i where ci ≡ ASCII value.

Pick a random integer x and compute each polynomial
w(x) mod p for a large prime p. This is our hash of w .

Store partial sums wj(x) :=
∑

i≤j ci · x i mod p and also the
inverse of x mod p.

Using arithmetic tricks, we can then compute the hash of w
if we remove any single character ci in O(1) time.

RMRC 2019 Solution Sketches



G - Typo (5/39)

Algorithm
Store the hash of each dictionary word w in an set.
Try removing each ci from each word w in the dictionary, if
its hash was one stored in the last step, w is probably a
typo.

Since you have to output each typo anyway, you can also
spend the time verifying it is indeed a typo (i.e. do the
string checking if you see a hit).
Can prove the expected running time is O(input size).
Why does this work? Distinct polynomials of degree < d
will agree in at most d points even if we work mod p. So
the probability of distinct strings of length ≤ d hashing to
the same value is ≤ d/p.

RMRC 2019 Solution Sketches



E - Hogwarts (4/6)

You can do a simulatenous traversal on the two graphs,
starting at the entrace at both graphs

Follow the corresponding edges and keep track of the pair
of rooms you are in for each graph

If we ever arrive at a node such that the first component is
the dormitory and the second component is not, the
answer is no.

Any graph traversal (e.g. breadth-first search) algorithm
would work.

Another view: both graphs are finite automaton. Is the
language of the first automaton a subset of the other one?

RMRC 2019 Solution Sketches



F - Molecules (2/4)

System of 2n equations with 2n unknowns: the x and y
values of the points that are not fixed equal the average of
their neighbours.

Can prove there is a unique solution, given the assumption
the molecule is connected and has at least one fixed point.

Alternatively, just simulate.
Place the unfixed points somewhere. Repeatedly, for each
point compute the average of its neighbours and move
halfway there. Converges close enough after a few
thousand iterations (can prove this too).

RMRC 2019 Solution Sketches



J - Watch Later (1/23)

Need to determine the order of types of video to watch.

Once the order is fixed, the number of clicks to watch a
particular type is the number of “chunks” of that type

Use dynamic programming O(2n) states: what is the
subset of types watched so far

To be fast enough, need to be efficient in determining the
number of chunks (can be done in linear time).

RMRC 2019 Solution Sketches


