2019 Rocky Mountain Regional Programming Contest

Solution Sketches

Credits

- Darko Aleksic
- Darcy Best
- Howard Cheng
- Zachary Friggstad
- Brandon Fuller

A - Piece of Cake! (71/71)

- The cake is cut into 4 pieces, pick the one with the maximum length for each side:

$$
4 \cdot \max (a, n-a) \cdot \max (b, n-b)
$$

K - Lost Lineup (67/68)

- $n=1$, answer is 1
- Otherwise, permutation of numbers between 0 and $n-2$
- Sort or find position one by one (small n), good enough even if it is $O\left(n^{2}\right)$.

D - Integer Division (43/66)

- Too slow to count each pair one at a time
- Equivalence classes: count how many elements have the same quotient
- If there are k elements with the same quotient, then there are $k(k-1) / 2$ pairs with the quotient
- You can use a map to count for each quotient, or sort the quotients
- Watch out for overflow!

I - Tired Terry (40/60)

- Sliding window of size p
- Update the count of "sleep" as we slide the window: look at the letter entering the window and leaving the window
- Easier if input string is duplicated to avoid wraparound
- Can be done in linear time.

B - Fantasy Draft (28/47)

- Just simulate one draft pick at a time...
- To do this under the time limit, you cannot afford to search the preference list every time
- Use a queue for each team: its preference with the global ranking appended
- Keep track of whether a player has been selected or not.

H - The Biggest Triangle (10/19)

- Enumerate all $O\left(n^{3}\right)$ different triples of lines. For each triple:
- Make sure no two are parallel (or coincide).
- Compute the intersections of any two from the triple.
- If they are distinct, add the distances between any two of them to get this triangle's perimeter.
- Mostly about getting the geometric details right.

C - Folding a Cube (9/28)

- The specification guarantees the six squares form a "tree".
- So there is a unique way to try folding them into a cube.
- For any two distinct \# squares i, j of the input, consider putting a "test" cube on square i and rolling it along \# squares to square j.
- If this would put the side initially on i face down on j, it is impossible to fold the cube.
- If this never happens for any i, j pair of \# squares, the folding is possible.
- So you have to track a side of the cube as it rolls around.

G - Typo (5/39)

- Just doing naively it is too slow, the words can be too big. Solution: Hashing with polynomials.
- Think of each word $w:=c_{0} c_{1} \ldots c_{d-1}$ as a polynomial $w(x):=\sum_{i} c_{i} \cdot x^{i}$ where $c_{i} \equiv$ ASCII value.
- Pick a random integer \bar{x} and compute each polynomial $w(\bar{x}) \bmod p$ for a large prime p. This is our hash of w.
- Store partial sums $w_{j}(\bar{x}):=\sum_{i \leq j} c_{i} \cdot \bar{x}^{i} \bmod p$ and also the inverse of $\bar{x} \bmod p$.
- Using arithmetic tricks, we can then compute the hash of w if we remove any single character c_{i} in $O(1)$ time.

G - Typo (5/39)

- Algorithm
- Store the hash of each dictionary word w in an set.
- Try removing each c_{i} from each word w in the dictionary, if its hash was one stored in the last step, w is probably a typo.
- Since you have to output each typo anyway, you can also spend the time verifying it is indeed a typo (i.e. do the string checking if you see a hit).
- Can prove the expected running time is O (input size).
- Why does this work? Distinct polynomials of degree $<d$ will agree in at most d points even if we work mod p. So the probability of distinct strings of length $\leq d$ hashing to the same value is $\leq d / p$.

E - Hogwarts (4/6)

- You can do a simulatenous traversal on the two graphs, starting at the entrace at both graphs
- Follow the corresponding edges and keep track of the pair of rooms you are in for each graph
- If we ever arrive at a node such that the first component is the dormitory and the second component is not, the answer is no.
- Any graph traversal (e.g. breadth-first search) algorithm would work.
- Another view: both graphs are finite automaton. Is the language of the first automaton a subset of the other one?
- System of $2 n$ equations with $2 n$ unknowns: the x and y values of the points that are not fixed equal the average of their neighbours.
- Can prove there is a unique solution, given the assumption the molecule is connected and has at least one fixed point.
- Alternatively, just simulate.

Place the unfixed points somewhere. Repeatedly, for each point compute the average of its neighbours and move halfway there. Converges close enough after a few thousand iterations (can prove this too).

J - Watch Later (1/23)

- Need to determine the order of types of video to watch.
- Once the order is fixed, the number of clicks to watch a particular type is the number of "chunks" of that type
- Use dynamic programming $O\left(2^{n}\right)$ states: what is the subset of types watched so far
- To be fast enough, need to be efficient in determining the number of chunks (can be done in linear time).

